
 

 

The ActiveX Control 
The simplest Visual Basic (VB) programming interface to Crystal Reports is the Crystal 

ActiveX control. The ActiveX control is similar to Visual Basic extension (.VBX) controls found 

in earlier versions of Visual Basic. When added to your project, the Crystal ActiveX control will 

appear on the Visual Basic toolbox, along with other icons for command buttons, forms, radio 

buttons, and other Windows controls. By simply adding the control to a form in your VB project, 

you will be able to control report behavior using properties and methods, the same way you 

control other object behavior on the form. 

Seagate has included the ActiveX control with Crystal Reports 8 for backward-

compatibility with previous Crystal Reports versions. However, no new Version 8 functions or 

features have been added to the ActiveX control (actually, this control hasn’t been updated since 

Crystal Reports 6). Seagate’s primary focus for Visual Basic integration is the Report Designer 

component (RDC), covered in Chapter 23. If you’re writing a new, from-scratch VB program and 

wish to integrate reports, take the little bit of extra time required to learn the RDC. As the 

sophistication of your VB program grows, you’ll be able to take advantage of the extra features 

the RDC offers. However, this book still provides this information on the ActiveX control in case 

you’re using an earlier version of Crystal Reports, or you really do want a quick, simple, and 

limited-function report integration solution. 

Note: Seagate has added a section to Developer’s Help that offers tips and directions 

for migrating an application from the ActiveX control to the RDC. Find 

Developer’s Help in \Crystal Reports program directory\Developers Files\Help. 

The filename is DEVLOPR.HLP. Look in the index for the topic “Migrating to the 

RDC from the OCX Index.” 

Adding the ActiveX Control 

The first step to using the Crystal ActiveX control is adding it to your VB project. This 

process is similar to adding any other ActiveX control (also known as OLE Custom control) to 

your project: 



 

 

1. Open an existing project or create a new VB project. 

2. Choose Project | Components from the VB pull-down menus, or press CTRL-T. The 

Components dialog box will appear. 

3. Scroll through the list on the Controls tab until you locate the Crystal Report Control item. 

Make sure you choose the Crystal Report Control, not other Crystal controls that may be 

registered on your system. If you don’t find the Crystal Report Control, click the Browse 

button and locate and select the CRYSTL32.OCX file in the Windows system directory. 

4. Click OK in the Components dialog box to add the Crystal ActiveX control to the VB 

toolbox, as shown in Figure 1. 

 

Figure 1: Adding the Crystal ActiveX control to the VB toolbox 



 

 

Now you need to add the ActiveX control to a form in your project. Simply open the form 

you want to add the control to, and double-click the report icon in the toolbox. A dialog box will 

appear indicating that the ActiveX control is being provided by Seagate only for backward-

compatibility (as discussed earlier in the chapter). Click OK. The icon will be added to the center 

of the form. You can drag the icon to an out-of-the-way place on the form if you wish. 

Remember that the icon is a design-time icon only—it won’t appear on the form at application 

run time. 

Typically, you’ll want to add the control only once to one form. You can use the control 

from other forms and from module-level code by preceding the control with the form name, so 

you won’t need to add the control to all forms in your project where you may want to display a 

report (see Figure 2). 

 

Figure 2: ActiveX control and properties 



 

 

Once you’ve added the control to a form, select the control to display and change design-

time properties in the VB Properties box. You’ll notice that many features of Crystal Reports are 

available in the Properties box. You can modify report object properties in this Properties box the 

same way you do for other VB objects at design time. 

In addition, the ActiveX control includes a Property Pages dialog box that organizes 

many ActiveX-control design-time properties in a simplified tabbed dialog box. To display it, 

select the (Custom) property in the Properties box and click the ellipsis (...) button next to it. The 

Property Pages dialog box will appear. 

 

You’ll notice many properties on the Property Pages dialog box that duplicate those in the 

VB Properties box. You can set these values in either place—it’s entirely up to you. 

The initial setting you may want to make with the new report object you’ve just added is 

the object name. Use the (Name) property in the Properties box to make this choice. Although 

the default name of CrystalReport1 will probably suffice, you might want to give the object a 

more meaningful name, including a standard object prefix for a Crystal Report object. You’ll 

notice the object is named crptXtreme in the sample application. 

At its most basic level, the ActiveX control can display a report in a preview window by 

just setting a few properties and adding one line of code to a VB form, menu option, or other 

control. Initially, you’ll only need to specify the name of the Crystal Report .RPT file to use. This 



 

 

name is set with the ReportFileName property in either the Properties box or the Property Pages 

dialog box. 

After you set the name of the report file, you can display the report merely by executing 

the control’s PrintReport method: 

intResult = crptXtreme.PrintReport

or by setting the control’s Action property to 1: 

crptXtreme.Action = 1

If the report can be found and run without any errors, it will be displayed in its own separate 

preview window. 

 



 

 

The difference between the two approaches is the way errors are handled. By using the 

PrintReport method, a result code is returned indicating whether or not the report processed. A 

result code of 0 indicates that the report processed properly. If the method results in an error, the 

result code will return an error in the 20XXX range. However, setting the Action property to 1 

doesn’t return a result code. If an error occurs, a VB error in the 20XXX range will be “thrown,” 

and it must be trapped by an On Error Goto routine. Crystal ActiveX control error handling is 

discussed in more detail later in the chapter. 

Tip: All of the ActiveX control properties and methods discussed in this chapter are well 

documented in Crystal Reports Developer’s Help. You may just want to open it in 

a separate Help window and minimize it for use while designing your Crystal 

Reports applications. 

Customizing the Preview Window 

When the preview window first appears, you may notice some default behavior that 

doesn’t please you. For example, a group tree may not appear, even though you created groups on 

your report. And, if you specifically designed your report to facilitate drilling down by double-

clicking group names or summary fields, you may be frustrated to discover that drilling down 

won’t work. 

This is simply the default behavior of the ActiveX control preview window, and it can be 

changed at design time or run time. Most properties that affect the behavior of the preview 

window begin with the word Window. For example, WindowTitle sets the text that appears in 

the title bar of the preview window. WindowShowGroupTree determines whether or not the 

group tree will appear. And, WindowAllowDrillDown determines whether or not you can drill 

down on the report. These properties can be set in the Properties box, in the Property Pages 

dialog box, or at run time. The following code sets these properties at run time: 

'Customize preview window

crptXtreme.WindowShowGroupTree = True

crptXtreme.WindowTitle = "Xtreme Orders Report"

crptXtreme.WindowAllowDrillDown = chkSummary



 

 

This will customize the preview window to show the group tree, provide a title to the preview 

window, and allow drilling down based on the true/false state of a check box on the form. 

There are many other properties that you can set to further customize preview window 

behavior, such as hiding preview window buttons and presetting the size and location of the 

preview window. 

Passing Parameter-Field Values 

Of the many features of Seagate Crystal Reports, parameter fields are one of the most 

flexible (see Chapter 12 for complete details). They allow a report viewer to select certain 

options when the report is run, such as choosing only certain records or affecting the way the 

report appears by using conditional formatting. Whatever value the viewer enters at the 

parameter-field prompt is passed into the report for use in formulas or record selection. 

When you integrate a report containing parameter fields into a VB application, you have 

several choices as to how you want parameter fields to be handled by the application. By default, 

the ActiveX control will display the parameter-field prompts in a separate window and use the 

results in the preview window. In simple report applications, this may be sufficient. 

However, one of the main reasons you’ll probably be using Visual Basic to integrate the 

report is to provide much more control over how information is supplied to the report. You’ll 

most likely want to gather information from the user with your own user interface and pass that 

information on to the report at run time. Since you can control both the report record selection 

and report formulas at run time from within your VB application, using parameter fields isn’t as 

necessary with an integrated report as it might be for a stand-alone report running directly out of 

Crystal Reports. 

However, if your report may be run in a stand-alone environment by some report viewers, 

as well as inside an integrated VB application by others, you still may need to pass values to 

parameter fields from within your code. Do this by setting the ParameterFields property at run 

time. The following is the syntax for setting this property: 

[form.]Report.ParameterFields(ArrayIndex)[=ParameterName;NewValue;

SetCurrentValue]



 

 

This is the first of several property arrays exposed by the ActiveX control. A property 

array is used when more than one item’s property can be set inside the report. In the case of 

parameter fields, a report can contain more than one item’s property. By using a property array, 

you can set multiple parameter-field values in your code. This property array, as with all Crystal 

ActiveX control property arrays, is zero-based. That is, the first occurrence, or element, of the 

array is numbered 0, not 1. If your report contains four parameter fields that you want to change 

in the code, you’ll set the ParameterFields property four times, using array indexes 0 through 3. 

The property looks for a string value containing three arguments, separated by 

semicolons. The first, ParameterName, indicates the name of the parameter field you wish to 

change. The NewValue argument provides the actual value you wish to pass to the parameter 

field. The SetCurrentValue argument determines whether the parameter field will be prompted 

for a value, displaying as the default the value you pass. 

Caution: Even if you pass parameter-field values, your report may not reflect the new 

values or may otherwise behave unpredictably if it contains saved data (that is, if 

Save Data with Report is checked on the Crystal Reports File menu). Since the 

overall purpose of a VB application is to run the report in real time after a user 

makes selections from the user interface, saving data with the report makes little 

sense anyway. If you are going to integrate a report with a Visual Basic 

application, turn this option off before saving your final version of the .RPT file. 

The following code from the sample Xtreme Orders application uses the value of a text 

box to determine what is passed to the Highlight parameter field in the report. This parameter 

field is used in conditional formatting to add a light-blue background to orders that exceed the 

parameter-field value. 

'Supply "Highlight" parameter field

If txtHighlight = "" Then

crptXtreme.ParameterFields(0) = "Highlight;0;TRUE"

Else

crptXtreme.ParameterFields(0) = "Highlight;" & txtHighlight & ";TRUE"

End If 'txtHighlight = ""



 

 

Here, the parameter-field value will be passed, and the usual Crystal Reports prompt will not be 

displayed. 

In this case, the value is set to 0 if the text box is empty. This is important to note, 

because the actual parameter field in the report is numeric. Passing it an empty string will cause a 

run-time error when the report runs. Also, if you are passing a value to a date parameter field 

from your application, make sure it conforms to the Crystal Reports date syntax. You must pass 

Date(yyyy,mm,dd), not mm/dd/yyyy, for the parameter field to work properly. Always pass a 

value to a parameter field in the exact same format that you would use when typing the value 

when prompted. 

Caution: Remember—the ActiveX control doesn’t expose Crystal Reports 8 advanced 

parameter-field features, such as multiple values or range values. You’ll need to 

use another integration method to take full advantage of the Crystal Reports 8 

parameter fields. 

Controlling Record Selection 

One of the most obvious benefits of integrating a Crystal Report into a VB program is 

controlling report record selection on the fly, based on your user’s interactions with the VB 

application. Your application can present any type of user interface you desire, including controls 

populated by databases. When compared to Visual Basic controls, Crystal Reports parameter 

fields are very limited in their editing and validation capabilities. Text boxes and other VB 

controls can contain edit masks and other sophisticated validation features, such as the VB date 

picker, to help users choose correct options. You can then use the results of user actions to build 

a new Crystal Reports record-selection formula before the report is printed. 

If you are used to using the Crystal Reports Select Expert for record selection, you need 

to familiarize yourself with the actual Crystal Reports formula that it creates, before you create a 

selection formula in your VB application. A Crystal Reports record-selection formula is a 

Boolean formula that narrows down the database records that will be included in the report. For 

example, the following record-selection formula will limit a report to orders placed in the first 

quarter of 1997 from customers in Texas: 



 

 

{Orders.Order Date} In Date(1997,1,1) To Date(1997,3,31) And

{Customer.Region} = "TX"

Tip: For a complete discussion of Crystal Reports record selection and how to create 

Boolean formulas, consult Chapters 5 and 6. 

There are two ActiveX control approaches to changing record selection: using the 

ReplaceSelectionFormula method, and using the SelectionFormula property. There is a very 

important distinction between the two. Using the ReplaceSelectionFormula method will 

completely replace any existing selection formula in the report with the one you pass, whereas 

setting the SelectionFormula property will append the selection formula you pass to any formula 

that already exists in the report. Be careful—only set the SelectionFormula property if you’re 

sure you want to keep what’s already saved with the report. Otherwise, the 

ReplaceSelectionFormula method will ensure your report uses only the selection formula you 

supply in your application. 

The syntax for these options is as follows: 

[form.]Report.SelectionFormula[= SelectionFormulaString$]

[form.]Report.ReplaceSelectionFormula [(SelectionFormulaString$)]

In each case, SelectionFormulaString$ is either a string expression or a string variable 

containing the Crystal record-selection formula. Thus, to pass a date-range record-selection 

formula to the Xtreme Orders report, based on the contents of the From Date and To Date text 

boxes, use the following code: 

'Supply record selection based on dates

strSelectionFormula = "{Orders.Order Date} in Date(" & _

Format(txtFromDate, "yyyy,m,d") & ") to Date(" & _

Format(txtToDate, "yyyy,m,d") & ")"

crptXtreme.ReplaceSelectionFormula (strSelectionFormula)

'Note: parentheses around strSelectionFormula are optional

Record-Selection Formula Tips 

There are several important points to keep in mind when building a Crystal record-

selection formula within your application. Specifically, there are some tricks to making sure that 



 

 

your string values are formatted properly, and to making sure that as much of the SQL selection 

work as possible is done on the server rather than on the PC. 

The string value you pass in your selection formula must adhere exactly to the Crystal 

Reports formula syntax. This includes using correct Crystal reserved words and punctuation. The 

previous example showed the necessity of building a Date(yyyy,mm,dd) string to pass to the 

selection formula. 

It’s also easy to forget the required quotation marks or apostrophes around literals that are 

used in comparisons. For example, you may want to pass the following selection formula: 

{Customer.Region} = 'TX' And {Orders.Ship Via} = 'UPS'

If the characters TX and UPS are coming from controls, such as a text box and combo box, you 

might consider using the following VB code to place the selection formula in a string variable: 

strSelectionFormula = "{Customer.Region} = " & txtRegion & _

" And {Orders.Ship Via} = " & cboShipper

At first glance, this appears to create a correctly formatted Crystal record-selection 

formula. However, if you submit this string with the ReplaceSelectionFormula method, the report 

will fail when it runs. Why? The best way to troubleshoot this issue is to look at the contents of 

strSelectionFormula in the VB Immediate window, by setting a breakpoint, or by using other VB 

debugging features. This will show the contents of the string variable after the preceding code 

has executed: 

{Customer.Region} = TX And {Orders.Ship Via} = UPS

Notice that there are no quotation marks or apostrophes around the literals that are being 

compared in the record-selection formula, a basic requirement of the Crystal Reports formula 

language. The following VB code will create a syntactically correct selection formula: 

strSelectionFormula = "{Customer.Region} = '" & txtRegion & _

"' And {Orders.Ship Via} = '" & cboShipper & "'"

The other major point to keep in mind is that if your report will be using a SQL database, 

remember that Crystal Reports will attempt to convert as much of your record-selection formula 

as possible to SQL when it runs the report. The same caveats apply to the record-selection 



 

 

formula you pass from your VB application as apply to a record-selection formula you create 

directly in Crystal Reports. In particular, using built-in Crystal Reports formula functions, such 

as UpperCase or IsNull, and using OR operators instead of AND operators, will typically cause 

record selection to be moved to the client (the PC) instead of the database server. The result is 

very slow report performance. To avoid this situation, take the same care in creating record-

selection formulas that you pass from your application as you would in Crystal Reports. Look for 

detailed discussions on record-selection performance in both Chapters 6 and 14. 

You may also choose to create the SQL statement the report will use right in your VB 

application, and submit it to the report by setting the SQLQuery property. More information on 

this approach can be found by searching for SQLQuery property in Developer’s Help. 

Setting Formulas 

Another powerful feature of Crystal Reports/Visual Basic integration is the ability to 

change report formulas from within your application at run time. As you might imagine, this 

opens up tremendous opportunities for a VB program to control the appearance and behavior of a 

report. This can be useful for changing formulas that are related to groups that may also be 

changed from within your code, formulas that show text on the report, or formulas that control 

math calculations or conditional formatting on the report. 

Setting formulas at run time is similar to setting the record-selection formula at run time 

(described in the previous section). You’ll need a good understanding of the Crystal Reports 

formula language to adequately modify formulas inside your VB code. If you need a refresher on 

Crystal Reports formulas, review Chapter 5. 

The ActiveX control provides a property array that allows you to change one or more 

formulas in the report. The syntax for the Formulas property is as follows: 

[form.]Report.Formulas(ArrayIndex)[= FormulaName= FormulaText]

As with parameter fields, formulas are available in a zero-based property array. You 

should begin using array element 0 for the first formula you are going to change, 1 for the 

second, and so on. You needn’t change the Formulas property for all formulas in the report—just 

the ones you want to modify at run time. When you modify the Formulas property, you must 



 

 

specify the exact formula name you wish to change, without the preceding @ sign, and then 

supply a string expression or variable that contains the new text you want the formula to contain. 

In the Xtreme Orders sample application, two formulas are changed at run time, based on 

user-specified criteria on the Print Report form. First, the Order + Tax formula is modified, based 

on the user’s entry in the Tax Rate text box. The formula is changed by the following code: 

'Set @Order + Tax formula

If txtTaxRate = "" Then

crptXtreme.Formulas(0) = "Order + Tax={Orders.Order Amount}"

Else

crptXtreme.Formulas(0) = "Order + Tax={Orders.Order Amount} *"_

& Str(txtTaxRate / 100 + 1)

End If 'txtTaxRate = ""

As in previous examples for parameter fields, you must take care when assigning a value 

to the formula. The Order + Tax formula is defined in Crystal Reports as a numeric formula. 

Therefore, you should pass it a formula that will evaluate to a number. If the user leaves the text 

box on the form empty, the program assumes there is no additional sales tax and simply places 

the Order Amount database field in the formula—the formula will show the same amount as the 

database field. 

If, however, the user has specified a tax rate, the VB code manipulates the value by 

dividing it by 100, and then adding 1. This will create the proper type of number to multiply 

against the Order Amount field to correctly calculate tax. For example, if the user specifies a tax 

rate of 5 (for 5 percent tax), the VB code will change the value to 1.05 before combining it with 

the multiply operator and the Order Amount field in the formula. Notice also that the formula 

name does not contain the leading @ sign. This should be left off when supplying formula names 

to the Formulas property. 

Another helpful use of formulas is to change text that appears on the report at run time, 

because the ActiveX control does not allow you to change the contents of text objects from 

within your code (this capability exists in the Report Designer component, covered in Chapter 

23). Changing text that appears at run time is helpful if you want to display criteria that the user 



 

 

has specified for the report, fields that the report is grouped or sorted on, or other useful 

information. 

Consider the following code that modifies the Sub Heading formula on the Xtreme Order 

report. This formula, located in the page header, identifies the date range, grouping, and tax rates 

specified by the user. 

'Set @Sub Heading formula

strSubHeading = "'" & txtFromDate & " through " & txtToDate

strSubHeading = strSubHeading & ", By " & cboGroupBy

If txtTaxRate = "" Then

strSubHeading = strSubHeading & ", No Tax'"

Else

strSubHeading = strSubHeading & ", Sales Tax = " & txtTaxRate & "%'"

End If 'txtTaxRate = ""

crptXtreme.Formulas(1) = "Sub Heading=" & strSubHeading

In this example, a string variable is used to build the correct formula syntax for the 

Crystal Reports string formula. Notice that the ultimate contents of the string variable must 

adhere to Crystal Reports syntax before the variable is passed to the report. In particular, this 

string formula begins and ends with an apostrophe. By using a string variable that is ultimately 

supplied to the Formulas property, you have more flexibility to examine the contents of the 

variable at a breakpoint in your code if you’re unsure whether the correct syntax is being passed 

to the property. 

Manipulating Report Groups 

One of the requirements for the Xtreme Orders report is that the user be able to specify 

how the report is grouped. A combo box exists on the Print Report form that lets the user choose 

between Quarter and Customer grouping. In the Crystal Reports designer, this is normally 

accomplished by using the Change Group option to change the field a group is based on, as well 

as the order (ascending or descending) that you want the groups to appear in. If the group is 

based on a date field, such as Order Date, you can also specify the range of dates (week, month, 

quarter, and so on) that makes up the group. To familiarize yourself with various grouping 

options, refer to Chapter 3. 



 

 

By being able to change these options from within an application at run time, you can 

provide great reporting flexibility to your end users. In many cases, you can create the appearance 

that several different reports are available based on user input. In fact, the user will be calling the 

same report, but the grouping will be changed at run time, based on user input. 

Grouping is modified at run time by setting the GroupCondition property. This property 

allows you to change most of the group specification (with the exception of Specified Order 

grouping) that you can set in the Change Group dialog box in Crystal Reports. GroupCondition, 

as with other previously discussed properties, is a zero-based property array. And, as with other 

similar properties, you needn’t specify a GroupCondition property for every group on your 

report—only those that you want to change from within your application. 

The following is the syntax for the GroupCondition property: 

[form.]Report.GroupCondition(ArrayIndex%)

[= group; field; condition; sortDirection]

The arguments for changing this property are as follows: 

Group A reserved word for each group contained on your report. The first group is 

referred to by the reserved word GROUP1, the second group by the reserved 

word GROUP2, and so on. 

Field The database field or report formula (including curly braces) that you want to 

base the group on. 

Condition A reserved word indicating the frequency of group creation. This is used for 

date field and Boolean field grouping to indicate how often a new group 

should be created. Allowed values for date fields are DAILY, WEEKLY, 

BIWEEKLY, SEMIMONTHLY, MONTHLY, QUARTERLY, 

SEMIANNUALLY, and ANNUALLY. Allowed values for Boolean fields are 

TOYES, TONO, EVERYYES, EVERYNO, NEXTISYES, and NEXTISNO. 

For nondate and non-Boolean fields, there is only one option you may supply 

for this argument, ANYCHANGE. Even though the ANYCHANGE argument 

doesn’t truly affect grouping, you must still supply it. 



 

 

Sortdirection The letters A or D. A specifies that groups will appear in ascending order, D 

specifies descending order. 

All four arguments must always be supplied and must be separated by semicolons. The value 

may be supplied as either a string expression or a string variable. 

Based on this syntax, the following code from the Xtreme Orders sample application will 

change the field the report group is based on, depending on the selection the user makes from the 

Group By combo box: 

'Change Grouping

Select Case cboGroupBy

Case "Quarter"

crptXtreme.GroupCondition(0) = "GROUP1;_

{Orders.Order Date};QUARTERLY;A"

Case "Customer"

crptXtreme.GroupCondition(0) = "GROUP1;_

{Customer.Customer Name};ANYCHANGE;A"

End Select 'Case cboGroupBy

Changing Section Formatting 

Because the design of Visual Basic applications often is intended to present reports to 

viewers in an online environment instead of just printing them on paper, interactive reporting 

features, such as drill-down, are invaluable to application designers. Having control over these 

capabilities at run time provides for great flexibility. 

The Xtreme Orders sample application gives users the opportunity to specify whether or 

not they want to see the report as a summary report only. When this check box is selected, the 

VB application hides the report’s details section so that only group subtotals appear on the report. 

In addition, you’ll need to control the appearance of the XTREME ORDERS.RPT file’s 

two-page header sections (Page Header a and Page Header b), as well as two Group Header #1 

sections (Group Header #1a and Group Header #1b). This is to accommodate two different 

sections of field titles that will appear differently if the report is presented as a summary report 

instead of a detail report. If the report is being displayed as a detail report, the field titles should 



 

 

appear at the top of every page of the report, along with the subheading and smaller report title. If 

the report is displayed as a summary report, however, you will only want the field titles to appear 

in the group header section of a drill-down tab when the user double-clicks a group. Since no 

detail information will be visible in the main report window, field titles there won’t be 

meaningful. 

Finally, you’ll want to show Group Header #1a, which contains the group name field, if 

the report is showing detail data. This will indicate what group the following set of orders applies 

to. However, if the report is showing only summary data, then showing both the group header 

and group footer will be repetitive—the group footer already contains the group name, so 

showing the group header, as well, looks odd. 

Therefore, you need to control the appearance of four sections when a user chooses the 

summary report option. Table 22-1 outlines how you should conditionally set these sections at 

run time. 

Section Detail Report Summary Report 

Page Header b (field titles) Shown Suppressed (no drill-down) 

Group Header #1a (group name field) Shown Hidden (drill-down okay) 

Group Header #1b (field titles) Suppressed (no drill-

down) 

Hidden (drill-down okay) 

Details (detail order data) Shown Hidden (drill-down okay) 

Table 1: Section Formatting for Different Report Types 

Now you must look at the available ActiveX control properties to find one that allows 

control of section formatting at run time. The only property the ActiveX control offers is 

SectionFormat. As with many other properties, SectionFormat is a zero-based property array that 

can be set as many times as necessary to format multiple sections of the report. The syntax is as 

follows: 



 

 

[form.]Report.SectionFormat(SectionArrayIndex%)[= sectionCode; visible;

newPageBefore; newPageAfter; keepTogether; suppressBlankSection;

resetPageNAfter; printAtBottomOfPage; underlaySection; backgroundColor]

The best place to look for a detailed breakdown of all the SectionFormat property’s 

arguments is Crystal Reports Developer’s Help. Search for SectionFormat property, and then 

SectionFormat. 

The arguments roughly equate to the check box properties you see when using the Format 

Section option in the Crystal Reports design environment (refer to Chapter 8 for more details). In 

a nutshell, arguments are broken down into three types: 

• Section-name argument A reserved word (again, look at Developer’s Help for details) that 

indicates the exact section of the report you want to format 

• On-off (true-false) properties Can all be supplied the letter T to turn the property on, the 

letter F to turn the property off, or the letter X to leave the property setting as it was when the 

report was created 

• Background-color property Requires an RGB (red-green-blue) number consisting of 

three numerals from 0 to 255, inclusive, separated by periods (for example, 255.0.0 would set 

pure red as the background color for the section) 

The following sample code changes a Crystal Reports ActiveX control named 

CrystalReport1. The code will show a second Group Header #2 section (Group Header #2b) that 

was suppressed when the report was created, set the New Page Before option on, and set the 

background color to pure blue. 

CrystalReport1.SectionFormat(0) = GROUPHDR.1.1;T;T;X;X;X;X;X;X;0.0.255

Now that you’ve been given a fairly detailed overview of this property, how can it be 

used with the Xtreme Orders report to correctly format the report for summary viewing? If you 

refer to Table 22-1, you’ll notice an immediate need to hide several sections, while still allowing 

drill-down functionality. In particular, the details section must be hidden, not suppressed. If the 

details section is suppressed, there’s little sense in even creating a drill-down report in the first 

place. 



 

 

Now, if you look at Developer’s Help for available on-off arguments, you’ll notice only 

the Visible argument. This equates to the Suppress (No Drill-Down) option from the Format 

Section dialog box in Crystal Reports. No Hide (Drill-Down OK) argument is available with the 

ActiveX control! You cannot format a visible section to be hidden, still allowing drill-down. As 

mentioned earlier, the ActiveX control is limited in its capabilities—you might not always be 

able to complete all the report customization you desire with this particular developer interface. 

So, then, how do you still accomplish your goal of providing the user a summary report versus a 

detail report choice? 

A second .RPT file must be created to complete the ActiveX control integration example. 

This .RPT file will have the report sections preformatted as described in Table 22-1, so that the 

report will already display in a summary fashion. In addition, the regular .RPT file showing the 

detail report will be used. Based on the choice made in the Summary check box, the appropriate 

.RPT file will be assigned to the ActiveX control before any other properties are set. Here’s the 

code from the sample application to accomplish this: 

'Set report filename based on summary check box

'(because ActiveX control can't set Hide section property)

If chkSummary Then

crptXtreme.ReportFileName = _

"C:\Visual Basic\ActiveX\Xtreme Orders Summary.rpt"

Else

crptXtreme.ReportFileName = _

"C:\Visual Basic\ActiveX\Xtreme Orders.rpt"

End If 'chkSummary

Although this may not seem the most elegant method of accomplishing your ultimate 

goal, it is an acceptable method to deal with the inherent limitation of the Crystal ActiveX 

control. Subsequent chapters will illustrate that this limitation does not apply to other integration 

methods. 

Choosing Output Destinations 

Although viewing a report online in the preview window is a good way to interact with a 

report, you’ll probably have situations in which you want the report printed to a printer, exported 



 

 

to another file format, or attached to an e-mail message. These options are available from buttons 

in the preview window (if you haven’t turned the options off with available ActiveX control 

properties). However, you may want tighter control over these capabilities from within your 

Visual Basic application. If you want to always send the output to a specific destination, you can 

set properties in either the Properties box or the Property Pages dialog box at design time to 

choose the output destination. Or, you may want to make this choice at run time based on user 

input. 

In the Xtreme Orders sample application, radio buttons and a text box allow the user to 

choose whether to view the report in the preview window, print the report to a printer, or attach 

the report as a Word document to an e-mail message. If the user chooses e-mail as the output 

destination, an e-mail address can be typed into a text box. Once the viewer has made a selection, 

you need to set the output destination automatically in your VB code. 

There are several properties that you can use to control the output destination: 

Destination, various EMail properties, and PrintFileType. The Destination property lets you 

make a general choice of output destination. The syntax is as follows: 

[form.]Report.Destination[= Destination%]

Destination% is an integer number or predefined constant that determines the output destination. 

The integers and associated available constants are listed in Table 22-2. 

Value Constant Description 

0 crptToWindow Sends the report to the preview window. 

1 crptToPrinter Sends the report to a printer. 

2 crptToFile Exports the report to a disk file. Specify the file format, such as 

Excel, Word, and so on, with the PrintFileType property, and 

specify the filename with the PrintFileName property. 

3 crptToMapi Attaches the report to an e-mail message using any MAPI-

compliant e-mail client installed on the user’s PC. Specify the file 

format for the attachment with the PrintFileType property. 



 

 

6 crptToExchange Exports the report to a Microsoft Exchange folder. 

Table 2: Constants Used with the Destination Property 

If you choose MAPI as the destination, the user’s PC needs to have a MAPI-compliant e-

mail client, such as Microsoft Outlook or Eudora Pro, installed. Also, you’ll be able to set other 

options for the e-mail message, such as the To list, CC list, Subject, and message text using the 

ActiveX control’s EMailToList, EMailCCList, EMailSubject, and EMailMessage properties. If 

you choose a destination of file or e-mail, choose the format of the exported or attached report 

(such as Excel, Word, Lotus 1-2-3, and so on) with the PrintFileType property. And, if you 

choose to export to a file, specify the filename with the PrintFileName property. 

Tip: Additional properties are used to specify the field-separator character, as well as 

number and date formats used for reports exported to ASCII text files. Look at 

Developer’s Help for more information. 

In the sample Xtreme Orders application, the following code is used to choose an output 

destination, as well as to specify a file type and e-mail information, based on user selection: 

'Set output destination

If optPreview Then crptXtreme.Destination = crptToWindow

If OptPrint Then crptXtreme.Destination = crptToPrinter

If OptEmail Then

With crptXtreme

.Destination = crptMapi

.EMailToList = txtAddress

.EMailSubject = "Here's the Xtreme Orders Report"

.EMailMessage = "Attached is a Word document showing

the latest Xtreme Orders Report."

.PrintFileType = crptWinWord

End With 'cprtXtreme

End If 'optEmail

Displaying Print Options 

By default, setting the destination to Printer and setting Action = 1 prints the report to the 

default printer without any further prompts. If, however, you’d like the user to be able to change 



 

 

printers, choose the number of copies to print, or print only a certain range of report pages, you 

can display the Print Options dialog box with the PrinterSelect method. Examine the following 

code from the sample application: 

'Let user change print options

If OptPrint Then crptXtreme.PrinterSelect

'WARNING: if a user cancels the Printer Select dialog box,

'the code has no way of knowing.

'The Action property will still be set!

As the remarks indicate, the one caveat to using the PrinterSelect method is that it doesn’t 

return any result code. If the user happens to click the Cancel button on the dialog box, the VB 

code will continue merrily on its way, presumably to the Action property or PrintReport method, 

printing the report anyway. 

If you prefer to design your own dialog box to gather print-related options from the user, 

you can use ActiveX control properties, such as PrinterDriver, PrinterName, and CopiesToPrint, 

to control printing. Look at Developer’s Help for information on these, and other, print-related 

properties. 

Error Handling 

As with any Visual Basic program, you’ll want to prepare for the possibility of errors that 

may occur. Integrating Crystal Reports with VB requires that you anticipate errors that the 

ActiveX control might encounter, in addition to other errors that the rest of your program may 

produce. 

Recall from earlier in the chapter the two ways of actually processing the report once the 

ActiveX properties have all been set: the PrintReport method and the Action property. Also recall 

that the main difference between these two approaches is the way errors are handled. The 

PrintReport method returns a result code indicating 0 if the report ran correctly, or a code in the 

20XXX range, containing an error code, if it didn’t run correctly. Conversely, setting the Action 

property to 1 doesn’t return a result code, but does result in a VB run-time error being thrown if 

the report doesn’t print properly. In either case, you’ll want to be prepared to intercept the 

potential error. 



 

 

The choice of error method is really up to you. However, if you’ve already developed an 

On Error Goto routine to handle routine VB errors, it may be easier for you to simply add 

additional code to handle reporting errors. The error codes returned by either report-processing 

method will be in the 20XXX range. Using members of the Errors collection, such as Err.Number 

and Err.Description, you can handle errors or present meaningful error messages to the user. The 

XXX three-digit codes are specific to the Crystal Reports Print Engine, which is actually called by 

the ActiveX control. For a complete breakdown of these error codes, search Developer’s Help for 

Error codes, Crystal Report Engine. There are a few additional error codes that apply only to 

the ActiveX control, and these can be found in Developer’s Help by searching for Error 

messages (ActiveX control). Examine the following code from the Xtreme Orders sample 

application. Notice that this code doesn’t trap any particular reporting errors, except when the 

user cancels report printing or exporting (which throws a 20545 error). If another error occurs, 

this routine simply displays the error code and text in a message box. 

Private Sub cmdOK_Click()

On Error GoTo cmdOK_Click_Error

. . .

cmdOK_Click_Error:

If Err.Number = 20545 Then

MsgBox "Report cancelled", vbOKOnly + vbInformation, _

"Print Xtreme Orders Report"

Exit Sub

End If 'Err.Number = 20545

MsgBox "Error " + CStr(Err.Number) + " - " + Err.Description, _

vbOKOnly + vbCritical, "Print Xtreme Orders Report"

End Sub

Caution: Often, you’ll introduce errors before processing the report with the PrintReport 

method or the Action property, such as by submitting a syntactically incorrect 

formula or using an incorrect section name when formatting sections. However, 

these statements won’t result in an error. Typically, no error will be detected until 

you actually process the report with PrintReport or Action = 1. 



 

 

Other ActiveX Properties and Methods 

This chapter has covered many of the typical Crystal ActiveX control properties and 

methods required for basic to intermediate report integration. The ActiveX control offers many 

additional features, however. To get an overview of other capabilities, search Developer’s Help 

for ActiveX control properties or ActiveX control methods. In particular, you may want to 

explore additional features that are specific to SQL database handling or working with Crystal 

Reports subreport objects. 

The Reset Method 

The Reset method is handy if your VB program can be designed to print a report several 

times within the same code loop. In the Xtreme Orders sample application, for example, when 

the OK button is clicked, the dialog box is queried to set several properties for the ActiveX 

control, culminating in processing the report with Action = 1. However, when the report is 

finished printing or being e-mailed, or when the viewer closes the preview window, the Print 

dialog box remains displayed. The user can change options and click OK again. 

But, what about previous property settings that were made from the last pass through the 

OK command button code? While your code may always set properties one way or another, 

regardless of the user interface, you may occasionally depend on the report’s default behavior 

being in place. 

For example, you may assume a certain default behavior for a report when it’s initially 

loaded. If your code makes some change to this behavior, it will remain that way if you cycle 

back through your code a second time. However, you may want the report to automatically return 

to its default setting each time it runs, so you don’t have to accommodate all the possible 

property changes that were made later in your code. 

By using the Reset method, you can have most report properties return to their default 

.RPT file settings before properties are again set in code. This ensures that all properties are set to 

their defaults, in case your code cannot modify all properties that were previously changed. 

Here’s the example from the Xtreme Orders application: 



 

 

'Reset properties in case they were set in a previous instance

crptXtreme.Reset

SQL Database Control 

Many corporate databases are kept on client/server SQL database systems, such as 

Microsoft SQL Server, Oracle, and Informix. Many Visual Basic applications provide front-end 

interfaces to these database systems, and they need to handle SQL reporting, as well. The Crystal 

ActiveX control contains several properties and methods that help when integrating reports based 

on SQL databases. 

Logging On to SQL Databases 

Because the VB application probably already handles SQL database security, and thus 

ensures that the application user has been validated by the database, you don’t want the ActiveX 

control to require the user to log on to the database again when it comes time to print a report. By 

using the Connect or LogOnInfo properties, or the LogOnServer method, you can provide a valid 

database ID and password for a report from within the VB code. Search Developer’s Help for 

information on these properties and methods. 

Retrieving or Setting the SQL Query 

When you submit a record-selection formula, as discussed earlier in the chapter, the 

Crystal ActiveX control will generate a SQL statement to submit to the database server 

automatically. However, if the record-selection formula contains Crystal formulas, an OR 

operator, or other characteristics that prevent Crystal Reports from including a WHERE clause in 

the SQL statement, report performance can be dramatically affected for the worse. You may, 

therefore, want to create the SQL statement the report uses directly in your VB application. As 

part of this process, you may find it helpful to retrieve the SQL statement that Crystal Reports is 

generating automatically. 

To retrieve the contents of the existing SQL statement, use the RetrieveSQLQuery 

method. This populates the control’s SQLQuery property, which can be examined inside your 

code. The SQLQuery property is a read/write property, so you can modify this property to make 



 

 

changes to the query that the report will submit to the server. Search Developer’s Help for 

specific syntax requirements for this method and property. 

Note: As with Crystal Reports, you cannot modify the SELECT clause in the SQL 

query. Only FROM, WHERE, and ORDER BY clauses can be modified. Don’t 

forget that you must still include the SELECT clause, however, and that it must 

not be changed from the original clause Crystal Reports created. Also, if you 

create an ORDER BY clause, you must separate it from the end of the WHERE 

clause with a carriage return/line feed (CR/LF) character sequence. Use the 

vbCrLf VB constant to add the CR/LF sequence inside the SQL query. 

Reading or Setting Stored Procedure Parameters 

If your report is based on a parameterized SQL stored procedure, you will probably want 

to supply parameter values to the stored procedure from within your code, much as you will want 

to respond to any Crystal Reports parameter fields that appear in other reports. 

To retrieve existing stored procedure parameters, use the RetrieveStoredProcParams 

method, as illustrated here: 

NumberofParams% = CrystalReport1.RetrieveStoredProcParams

Notice that this method returns an integer result indicating the number of parameters that 

the report contains. This method also populates the zero-based StoredProcParam property array 

with the contents of the parameters. You can then read the existing values if necessary. When 

you need to populate the parameters before running the report, set the StoredProcParam property 

with the new value, as illustrated here: 

[form.]Report.StoredProcParam(ParameterArrayIndex%)[= newParameter$]

The newParameter$ argument is a string expression or variable, regardless of the actual 

data type of the parameter. Just make sure to provide the proper type of data, such as only 

numeric information for a numeric parameter. Crystal Reports will automatically convert the 

string to the proper data type when it submits the parameter to the database server. 



 

 

Subreport Control 

If you’ve added subreports to your main Crystal Report, you may want a degree of control 

over how they behave from within your VB application, as well. The ActiveX control uses an 

interesting approach to let you customize many aspects of subreports in the same way you 

manipulate the main report. 

If you already know the name of the subreport you want to change, simply modify the 

SubreportToChange property: 

[form.]Report.SubreportToChange(= SubreportName$)

The SubreportName$ argument is a string expression or variable that contains the name 

of the subreport you want to manipulate. Be careful—this argument is case-sensitive. After you 

set the subreport name, many properties that you set thereafter will apply to the subreport instead 

of to the main report. A list of the properties that will now apply to the subreport can be found by 

searching Developer’s Help for SubreportToChange property (ActiveX control). To again 

manipulate the main report, simply change the property again, supplying an empty string (“ ”) for 

the subreport name. 

If your code needs to query the main report for the number and names of subreports it 

contains, use the GetNSubreports and GetNthSubreportName methods to make this 

determination: 

[form.]Report.GetNSubreports

The preceding statement returns a zero-indexed number indicating the number of subreports in 

the main report. 

[form.]Report.GetNthSubreportName (SubreportNum%)

This statement returns a string containing the name of the subreport that matches the 

SubreportNum index (zero-based). Make sure you pass an index between zero and what was 

returned with GetNSubreports. 

Developer’s Help contains complete information on these methods. 



 

 

Tip: Complete information on using subreports in Crystal Reports is available in 

Chapter 11. 


	Adding the ActiveX Control
	Customizing the Preview Window
	Passing Parameter-Field Values
	Controlling Record Selection
	Record-Selection Formula Tips

	Setting Formulas
	Manipulating Report Groups
	Changing Section Formatting
	Choosing Output Destinations
	Displaying Print Options

	Error Handling
	Other ActiveX Properties and Methods
	The Reset Method
	SQL Database Control
	Logging On to SQL Databases
	Retrieving or Setting the SQL Query
	Reading or Setting Stored Procedure Parameters

	Subreport Control


